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Abstract. The method devised by Cerkaski has been used for the group Sp(2n)  to find 
some 6-j  symbols for which a single multiplicity index is required. This approach possesses 
some advantages over that based on Racah's techniques for SO(3): the formulae for the 
6-j  symbols are comparatively simple, and they automatically exhibit the symmetries of 
Jucys. Elementary means are used to show that the eigenvalues of Casimir's operator C, 
for Sp(2n) are identical to those of C, for O ( 2 d )  if we take d = -n and replace the irreps 
of Sp(2n)  by their transposed counterparts for 0 ( 2 d ) ,  where d is integral or half-integral. 
This enables the formulae for Sp(2n)  to be used to generate expressions for some 6-j  
symbols for the orthogonal groups O ( 2 d )  and SO(2d) .  Illustrations are provided by 
S 0 ( 2 / +  I )  and O(4). 

1. Introduction 

In an  analysis of considerable ingenuity, Cerkaski (1987) has shown how a class of 
6-j  symbols with one multiplicity index can be calculated for the groups Sp(2n), 
S 0 ( 2 n ) ,  and S 0 ( 2 n + 1 ) .  The essence of his approach is to use the generalized 
Biedenharn-Elliott identity as an equation determining the acceptable eigenfunctions 
associated with the diagonalization of a secular matrix. The roots of the secular equation 
and  the diagonal elements of the secular matrix are known in terms of various 
eigenvalues of the second-order Casimir operator C,. Many of the elements of the 
secular matrix can be chosen to be zero, a structural decision that forces the solution 
of the multiplicity problem to take a particular form. It also happens that this informa- 
tion is enough to fix (to within a phase) the non-vanishing off-diagonal elements. This, 
in turn, allows the eigenfunctions to be found and  consequently a set of 6-j  symbols. 

Cerkaski illustrated the general formalism by giving the key algebraic quantities 
for a special case. However, he did not put the parts together to give explicit formulae 
for any 6-j  symbols. It occurred to us that it would be interesting to d o  so. How well, 
we may ask, does Cerkaski's approach work in practice? In the absence of a sound 
strategy, clumsy algebraic expressions can easily arise when multiplicity separations 
are being made. We usually want to avoid quadratic forms that cannot be factored 
into two linear parts with rational coefficients, since such forms tend to produce high 
prime numbers in a numerical evaluation. Butler (1981, p 76) has given the absence 
of high prime numbers as a criterion for preferring one multiplicity separation over 
another for the icosahedral group, a point of view that we feel should be given 
considerable weight. Any underlying structure stands a better chance of being recog- 
nized when the mathematical verbiage is reduced to a minimum. 
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There is another reason for examining Cerkaski’s approach. CvitanoviC and 
Kennedy (1982) have stated that the n-j symbols for Sp(2n) and SO(2n) go into each 
other if the dimension 2n is replaced by -2n and if symmetrization and antisymmetriz- 
ation (as determined by the Young tableaux from which the irreps are derived) are 
interchanged. Their derivation uses diagrammatic techniques that have been developed 
in previous articles (Kennedy 1981, 1982) and which the casual reader must find 
disconcertingly ineffable at first sight. How, it might be asked, should SO(2n + 1) be 
treated? What happens if the symmetry interchange leads to a pair of irreducible 
representations (irreps) of SO(2n) (which would occur if their final weights are 
non-zero) instead of the single encompassing irrep of 0 ( 2 n ) ?  Cerkaski devised his 
method for Sp(2n),  SO(2n) and SO(2n + 1) separately, and it  would be of considerable 
interest to show how the use of negative dimensions fits into the picture. In working 
this out in section 6 below, we take the opportunity to treat the reciprocity between 
the orthogonal and symplectic groups in algebraic rather than diagrammatic terms, 
our aim being to make the analysis more accessible to the general reader. 

2. The method applied 

It was at once clear to us that Cerkaski’s method could be used to find the 6- j  symbols 

for the group Sp(2n).  The multiplicity index r is required to separate each of the two 
duplications that occur when ( p )  = (1 1) and (2). Here and in (1) we denote irreps of 
Sp(2n) by their highest weight (omitting any zeros from the angular brackets). The 
results of the calculation are set out in table 1. The two values of r are denoted by a 
and b and attached as a subscript to ( p ) .  To avoid factorial functions in the tabulation, 
the 6 - j  symbols (1) are converted to the U coefficients of Jahn (1951) by multiplication 
by [Dim(A) Dim(p)]”’. 

A set of special cases for n = 3 and a = 2 has already been presented in a preliminary 
report on Cerkaski’s method (Judd 1987). We should also mention here that the 
isomorphism Sp(4) = SO(5) relates the entries of table 1 to the 6 - j  symbols of the group 
SO(5) when we set n =2.  Since the weight space for Sp(4) is two-dimensional, all 
entries for ( A )  = (all) can be ignored. Furthermore, (al) x (al) contains (11) only 
once, so at first sight the two sets of symbols labelled by ( l l ) a  and ( l l ) ,  describe a 
multiplicity separation where none exists. However, all of the entries corresponding 
to ( l l ) b ,  with the exception of the irrelevant case for which ( A ) =  (all), contain n - 2  
as a factor and thus disappear. The remaining entries must be identical to the SO(5) 
U-coefficients 

U ( ( w ’ w 2 )  ( i t )  ”) 
(ft) ( W l W 2 )  W’ 

where w , = t ( a + l )  and w 2 = i ( a - 1 ) .  

3. An alternative approach 

The 6-j  symbols (1) were of interest to us f:)r several reasons. We had gained some 
experience in calculating multiplicity-free 6-J symbols for S0(21+ 1) (Judd et a1 1986) 
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and for G, (Judd 1987), and we wanted to study how a multiplicity index could be 
handled. We also wanted to extend the range of our techniques by picking a different 
class of Lie groups. The method we were using differed from Cerkaski’s. Our central 
idea sprang from the original work of Racah (1942) in which he introduced the W 
coefficient (an unsymmetrized 6-j  symbol) to calculate the matrix elements of scalar 
products of the type T y ’ *  Tik’  for the atomic configuration I A I B ,  where the rank k of 
the tensors specifies an irrep of SO(3). To work out the 6-j symbols (1) by an extension 
of our earlier method, the atomic configuration l A I B  must be replaced by j “ j?”, where 
j ,  j ’  and j “  denote three inequivalent bosons, each with identical angular momentum 
j .  We can introduce Sp(2j-C 1) to describe the transformation properties of these states; 
therefore 2 j+  1 = 2n. The scalar product is replaced by 

where the suffices A, B and C refer to the three parts j “ ,  j ‘  and j ” .  The coefficients SpQ 
determine the relative strengths of the scalar products and are at our disposal. The 
actual construction of the states of jVj?’’ belonging to a given coupling ((al)(l))(A) 
can be largely avoided by a judicious use of the diagonal sum rule, and the 6- j  symbol 
under study can be related to the three strengths S,, appearing in the linear combination 
(2). If ( p )  occurred just once in the decomposition of the Kronecker square (al)’, all 
three operators in (2)  would yield matrix elements proportional to one another. This 
is not so for ( p )  = (1 1) or (2). In these cases the matrix elements depend on the relative 
strengths of the coefficients S A B ,  SAC and SBc, though the first two of these always 
appear in the combination S A B  + SAC. This is a consequence of the symmetry between 
B and C for the configuration j‘”j”. We can thus generate one string of 6-j symbols 
for which r corresponds to the coefficients of S A B  + SBc , and a second string for which 
r (= r‘,  say) corresponds to the coefficients of SBc. 

I t  was at once found that the multiplicity labels a and b of table 1 do  not coincide 
with r and r ’ .  This is not surprising, of course, since we cannot expect two distinct 
methods to lead to identical multiplicity separations. More importantly, we cannot be 
sure that the labels r and r’ correspond to orthogonal rows of the U matrix. Orthogonal- 
ity is guaranteed by Cerkaski’s method because his results stem from the diagonalization 
of a real Hermitian matrix. The method of the paragraph above leads to orthogonal 
rows provided a suitable choice is made for the strengths S,. For example, we 
can generate Cerkaski’s results for ( p ) = ( 2 ) ,  by taking an interaction for which 
S A B  = 0 and SAC = SBc. In this case the operator ( 2 )  possesses eigenvalues for the state 
((ul)( l ) ) ( A )  proportional to the combination 

G(A) - G( 1) - G(a1)  

where G ( h )  is the eigenvalue of Casimir’s operator C2 for Sp(2n) .  

4. Jucys’ symmetries 

There is a second difference between the two methods of resolving the multiplicity 
ambiguities. The analogue of the substitutionsj + - j  - 1 for S 0 ( 3 ) ,  which leave invariant 
the characteristic quadratic form j (  j + l ) ,  is 

a+-u-2n  (3) 
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for ( a l ) ,  since G(a1)  is proportional to the product ( a + 2 n  - l ) ( a +  1 )  (Wybourne 
1974). Substitutions that leave the eigenvalues of Casimir’s operators invariant have 
been studied extensively by Jucys (1970) and  his colleagues (Jucys and  Savukynas 
1973, AliSauskas 1987). Other G(A) are not necessarily invariant under the substitution 
(3); however, we can always find a representation (A’)  for which G(A)+ G(A’). For 
the irreps appearing in table 1, for example, it is easy (with the aid of equation (15.6) 
of Wybourne (1974)) to verify the correspondences ( a -  1, l ) + ( a +  1, l),  (aO)+(aO), 
( a l l ) +  ( a 1  I), and (a2)+ ( ~ 2 ) .  Since Cerkaski’s method depends crucially on using 
Casimir’s operator C 2 ,  we would expect the entries of table 1 to exhibit Jucys’ 
symmetries; and, indeed, the first and fifth columns, which are associated through the 
interchange ( a -  1, l ) - ( a +  1, l),  are reciprocally connected (to within a phase factor) 
by the substitutions (3). The use of the operator (2), on the other hand, does not 
impose Jucys’ symmetry on the calculation. While this gives us greater freedom in 
making the multiplicity separation, there is no particular advantage in doing so. In 
fact, we normally need guidance of some kind to avoid ungainly algebraic combinations. 

5. Negative dimensions 

The close connection between the orthogonal and  symplectic groups can be seen by 
comparing the branching rules for the decomposition of an  irrep [ A ]  of U ( N )  
(Wybourne 1970, p p 3 9  and  42). We have only to interpret [ A ]  as a Young tableau 
and  reflect in the diagonal all manipulations with the cells (that is, transpose all 
operations by interchanging rows and columns) to pass from one scheme to the other. 
Every irrep of the full orthogonal group corresponds to an irrep of the symplectic 
group. The dimensions of these two groups need not be the same; but, should the 
tableau reflection of the irrep of one group lead to more rows than the dimension of 
the weight space of the other, the modification rules of Murnaghan (1938) have to be 
brought into play. (See also Wybourne (1970), p p  42-5.) For groups whose dimensions 
N are sufficiently large, the paired irreps ( w ,  w 2 . .  .) and (a la2 .  . .) end with a string 
of zeros and  no adjustments are necessary. Since O ( N )  possesses an  I-dimensional 
weight space for both N = 21 and N = 21+ 1, we can cope with orthogonal groups in 
a n  even and  a n  odd number of dimensions at the same time: their irreps are both of 
the type ( w I w 2 . .  . w,). The reflection operation takes ( a l a 2 . .  . a,,) of Sp(2n) into W 
of O ( N ) ,  where 

. . .  1VI-~20’-Vi)* (4) n - 1)m,,-l-m##( n - 2)u,,-2-flt3-, w = ( 

The powers of the weights indicate the number of occurrences: that is, w I  = n, w2 = 
n, . . . , wV,t = n, w ~ , , - ~  = n - 1, etc. The easiest way to see how the structure of W comes 
about is to take the tableau [a laz . .  . a,,] and read off the number of cells in successive 
columns. There is no difficulty in doing this when 12 a , ,  since we have enough 
dimensions in the weight space of O ( N )  to accommodate all the rows of the reflected 
tableau. When this condition is not satisfied, the modification rules must be introduced. 
We return to this point in section 7. 

The relevance of negative dimensions becomes apparent when the eigenvalues of 
Casimir’s operator C2 are calculated. From equations (15.5)-( 15.7) of Wybourne (1974) 
we get 

n 

G ( a , u z . .  . a , )=a(n+ l ) - ’  1 [ ( a , + n  - i +  1 ) 2 - ( n - 1 + i ) 2 ]  ( 5 )  
! = I  
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for Sp(2n) and 
I 

G ( w , w ,  . . . w I )  = $ ( d  - 1) ' 1 [ ( w , + d  - i ) 2 - ( d  - i)'] (6) 

for 0 ( 2 d ) ,  where d can be integral (in which case d = I )  or half-integral (in which 
case d = 1 + $ ) .  Equation ( 6 )  is equally valid for S 0 ( 2 d ) ,  but we prefer to work with 
the full orthogonal group to avoid the doubling of the irreps that occurs when d = 1 
and w, # 0. To evaluate G (  W ) ,  we first define T ( 9 )  by means of the equation 

, = I  

T , ( q ) = ( d  - 1 ) k + ( d - l + l ) A + ( d - l + 2 ) k + .  . .+ (9 ) ' .  (7 )  
Using equation (6), we see that the first a, weights (all equal to n )  of W produce a 
contribution of 72( n + d - 1) - T,( n + d - 1 - a,) to the summation in equation 
(6); the next - a, weights (all equal to n - 1) of W produce a contribution of 
Tz( n + d - 2 - a,) - T2( n + d - 2 - an-,)  to the summation; and so on until, for the 1 - U ,  

weights all equal to 0, we get the contribution T2( d - a1 - 1). When we add all these 
contributions we get 

T,(n + d - 1) - ( n  + d  - 1 - a,,)2- ( n  + d - 2 -  (T,-~)'. , . - ( d  -al)'. (8) 

From this we must subtract the second term in the square brackets in equation 
(6); that is, we must subtract T,(d - 1). This term can be combined with the term 
T2( n + d - 1) in the expression (8), with the result that we have 

I 
G( W )  = -a(d - l ) - '  C [ ( d  - U , +  i -  l )* - (d  + i -  l)']. (9) 

r = l  

This becomes identical to G(a,a, .  . . a,,) given in equation (5) if we replace d by -n. 
That is, Casimir's operator C, for Sp(2n) possesses eigenvalues that are identical to  
those of C2 for O ( 2 d )  when we reflect the tableaux and replace n by -d. 

A referee has kindly pointed out to us that it would be useful to mention that 
similar correspondences must occur for SU(n)  and S U ( d ) .  Indeed, Haase and Butler 
(1985) have noticed that some elementary 6 3  symbols for the unitary groups go into 
each other when we reflect the tableaux and replace n by -n. The interested reader is 
referred to other articles by members of the Christchurch school (Bickerstaff and 
Wybourne 1981, Bickerstaff 1984, Haase and Butler 1984, Haase and Dirl 1986). 

6. Generalizations 

The occurrence of negative dimensions has been explored in terms of Grassmann 
variables by Dunne (1989). He showed that the pth-order Casimir operators C, for 
SO(2n) and Sp(2n) possess eigenvalues for the totally symmetric irreps (either ( r O " - ' )  
or ( r O " - ' ) )  that go over into (-1), times the eigenvalues of the totally antisymmetric 
irreps of the other group (either ( l r O n - ' )  or ( lrOfl-')) if n is replaced by -n. The phase 
differs trivially from ours because of his omission of the factors preceding the summation 
signs in equations (5) and (6). Equation (9) shows that, for p = 2, this result can be 
generalized from tableaux possessing single columns and single rows to any pair related 
by the reflection operation. Mkrtchyan (1981, note vi) has stated without proof that it 
is true for any p. We can easily adapt our derivation to confirm this by noting that 
Popov and Perelomov (1968, equation (41)) have expressed the eigenvalues of C, in 
terms of the sums of products of the type appearing in square brackets in equations 
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( 5 )  and (6),  the only difference being that various powers k appear instead of the 
squares. However, the analysis leading from equation (6)  to equation (9) is unchanged 
if every T2 replaced by the corresponding Tk .  Furthermore, the coefficients in the 
expansion used by Popov and Perelomov (1968, table 11) go into each other when the 
substitution d + - n  is made, as can be verified in general by using their generating 
function for the C,,. The upshot of all of this is that any multiplicity separation resting 
on the diagonalization of any of the C,, must carry over from O(2n)  to Sp(2d)  on 
making the substitution d -+= -0. 

7. Special cases 

Since Cerkaski’s method depends on the properties of C2, we know that we can 
generate 6 9  symbols for O ( 2 d )  by taking the formulae for the 6-j symbols of Sp(2n)  
and replacing n by -d. At the same time, the representation labels must be changed 
by interchanging the rows and columns of the corresponding tableaux. This is easily 
done for the entries of table 1: 

( a -  1, 1)+ (21“-7 ( a )  -+ ( 1 <‘ 1 

The actual substitution n + -d requires some care because a naive application to an  
expression like ( n 2 ) ” ’  would y ie ld+d rather than -d. To ensure that the new U 
coefficients form orthonormal matrices, the number of sign reversals under a square-root 
sign in the numerator (x, say) and in the denominator ( y ,  say) should be counted and  
the new U coefficient multiplied by (-l)(.‘-J)’2 . This factor keeps track of the factors 
i that are produced by each sign reversal. 

As an  example, we construct the U coefficients 

(20 . . .  0) ( lo . . . ( ) )  ( A )  
. . . O )  (20 . . .  0) ( p )  

for S0(21+ 1). We set (T = 1 and 2n = -21 - 1 in table 1. The irreps ( a  - 1 , l )  and  (a2)  
no longer specify highest weights and are unacceptable. This removes two columns 
from the table. Of the entries remaining in the five rows, all those in the rows (1 l), 
and  (2),, contain ( a  - 1) as a factor and disappear. We are left with a three-by-three 
matrix. The factor (-l)(-y-.’)’2 produces only one sign reversal, namely that for the first 
entry. The final matrix is given in table 2. The entries agree (to within a phase) with 
those given a few years ago (Judd et a1 1986, table 1) .  

Sometimes the modification rules have to be used when transforming Sp(2n) to a 
group O(2d)  with small d. If, for example, 2d = 7 and a = 4, the substitutions (10) 
show that the irreps (211), ( l l l l ) ,  (3111), (2211) and (21111) of O(7) appear. Since 
the weight space of O(7) is three-dimensional, only the first irrep is immediately 
acceptable. The others convert to ( l l l ) ,  (3111, (221) and (210), respectively. We can 
check that the modification rules provide the right collection of irreps by referring to 
table D-4 of Wybourne (1970) for the reduction of the Kronecker product (21 1) x (100). 
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) for S0(21+1).  
(20 . . .  0) (10 . . .  0) ( A )  

(10 . . .  0) (20 . . .  0) ( g )  Table 2. Values of U 

8. The group O(4) 

When d is integral (and equal to /)  an irrep ( w I w 2 . .  . w,) of O(21) gives rise to the 
two irreps (w, w 2 .  , . * w,) of SO(21). To exemplify this, we set 2 n  = -4 and U = 2 in 
the entries of table 1, thereby obtaining a set of U coefficients for O(4). They are 
displayed in table 3. In order to distinguish the irreps of O(4) from those of S0(4) ,  
the former are indicated by square brackets. The modification rules allow us to replace 
the heading [211] of the fifth column by [20], which we distinguish from the first 
column by adding the subscripts x and y. It is easy to confirm that [21] x [ 101 contains 
two irreps [20] from table D-1 of Wybourne (1970). The labels for the rows carry over 
directly from those given in table 1; however, [21] x [21] contains two irreps [OO] and 
four irreps [20], so it may seem odd that only half of them appear in table 3. The 
reason for this stems from the fact that irreps of O(4) of the type [ W O ]  require an 
additional label (+ or -) to specify them uniquely (Elliott and Dawber 1984, vol 2, 
p 348). The appropriate choice for [OO] and [20] depends on the corresponding choices 
that have implicitly been made already for the two irreps [lo] appearing in the U 
coefficient. For example, if one is [ 101’ and the other [lo]-, their coupling to [ W O ]  
forces this irrep to be of the type [WO]-, and [WO]+ plays no role. In this way the 
superfluous rows in table 3 disappear. 

Since SO(4) = S0,(3) x SOB(3), where A and B distinguish the two components of 
the direct product, it should be possible to reconstruct table 3 from the U coefficients 
for SO(3). The only unknowns are the isoscalar factors involving the irreps of O(4) 

Table 3. Values of U (::Ai :iyi [i;) for O(4). 
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and SO(4). It is not difficult to work out what they should be in order to make the 
correspondence between the U coefficients of O(4) and those of SOA(3)xSOB(3) 
complete. The connection is most readily expressed by writing 

) 4 [lo1 [211 [PI 
[211 1101 [ A I  

= (([101[211)[AI, [211, [ ~ O I l [ ~ O l ,  ([211[211)[Pl, [IO]) 

and  then expanding both the bra and the ket of the above recoupling coefficients in 
terms of their analogues in SO(4). For example, 

I[ 101, ([211[2 1 I)[  1 1 l a  3 [ 101) 

= - ( 5 /  12)’’*{1(10), ((21)(21))(11), (10)) 

+I(lO), ( ( 2 -  1)(2- 1))(1- I ) ,  (10))) 

- ( 1 / w ’ 2 { l ( w ,  ((21)(21))(1- 11, (10)) 

+ K l O ) ,  ((2 - - 1))(1 11, (10))). (12) 

The passage from SO(4) to SOA(3)xS0,(3) is accomplished by replacing an  irrep 
( w1 w2) of SO(4) by the product j ,  x j ,  of two angular momenta, where j ,  = f( w1 + w2) 
and j ,  = $( w, - wz). 

The coefficients in the expansion of equation (12) indicate that a non-trivial 
adjustment is required to find the 6-j symbols of SO(4) from those of O(4). When 
every irrep of O(21) corresponds to a single irrep of SO(21) (that is, when w, = 0), the 
isoscalars reduce to phase factors and the U coefficients of these two groups become 
essentially identical to one another. Of course, we could have calculated the 6-j  symbols 
for SO(4) by using Cerkaski’s method for this particular group directly, rather than 
going via Sp(-2d). However, it is interesting to note that there is no provision in the 
formulation he gave of his method for making the extension from SO(4) to O(4). We 
should also point out that the appearance in our work of the 6-j symbols for O(4) 
rather than SO(4) could not have been anticipated from the analyses of Cvitanovid 
and Kennedy (1982) and  Dunne (1989), where the orthogonal-symplectic connection 
is discussed solely in terms of the duality Sp( - N )  c, SO( N ) .  

9. Concluding remarks 

The most striking feature of table 1 is that all the entries are the square roots of products 
of factors linear in U. No quadratic forms appear. Not only that, but there are two 
apparently accidental zeros-possibly suggesting that there remains some structure 
still to be uncovered. Cerkaski’s method has led to an elegant solution of the multiplicity 
problem for the particular example under study. Whether results of comparable 
simplicity occur in other cases or not is an open question. We were fortunate in that 
the relevant eigenvalues of Casimir’s operator C2 factorized into two parts with rational 
coefficients, This cannot be expected to happen very often, and any quadratic forms 
for which such a factorization cannot be made will necessarily be carried forward into 
the 6-j symbols themselves. However, the example we have chosen to study has worked 
out extremely nicely, and  this augurs well for extensions to other cases. 
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As a final comment, we note that it is easy to pass from the U coefficients to 6- j  
symbols by dividing by the factor [Dim(/\) Dim(p)]’”, as mentioned in section 2. For 
special cases, the dimensions of the irreps may be found from the tables of Wybourne 
(1970) or those of McKay and  Patera (1981). Of course, analytical formulae are readily 
available. The manipulations associated with the introduction of negative dimensions, 
which relate the Casimir operators for Sp(2n)  and  O ( 2 d )  when we set n = - d  (as 
described in section 5), can also be made in these formulae. This was noticed by King 
(1971) a long time ago. So the connections between the U coefficients of Sp(2n) and  
O ( 2 d )  go over immediately into connections between the corresponding 6- j  symbols 
of these two groups. 
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